# TSC Battery

#### The allrounder for polymeric and solid samples



The TSC Battery cell family enables electrochemical studies on liquid airand moisture-sensitive polymeric and solid samples, requiring only small **sample amounts**. The sample contacted by two stainless current collector electrodes in a sandwich-like assembly. By default, the PEEK housing contains two lateral ports for inserting reference electrodes or capillaries ensuring a high level of flexibility. Coming with two contact springs with different spring loads, the stack pressure can be adjusted to values up to ca. 10 bar.



### Suggested Accessories



Microcell HC Basic Package



Microcell **Passive** 

#### **Typical Applications:**

- Determination of the **conductivity** of solid and polymeric electrolytes
- Determination of MacMullin numbers of separator foils
- Determinaton of tortuosity values of active materials



Spacer Set



Electrodes







# TSC Battery



### **Technical Specifications**

| Suitable samples:                              | Polymeric foils,<br>solid pellets                                        |
|------------------------------------------------|--------------------------------------------------------------------------|
| Temperature range:                             | -40 °C ↔ +100 °C                                                         |
| Materials in sample contact:                   | PEEK, stainless<br>steel 1.4404,<br>EPDM                                 |
| Max. sample diameter                           | 12.0 mm                                                                  |
| Max. sample thickness with min. stack pressure | 2.4 mm                                                                   |
| Spring rates                                   | 2.4 N/mm<br>32.6 N/mm                                                    |
| Options:                                       | <ul><li>Electrode with punching edge</li><li>Housing w/o ports</li></ul> |

#### References

[1] A. Hatz et al., 'Faster Water-Assisted Lithium Ion Conduction in Restacked Lithium Tin Sulfide Nanosheets', Chem. Mater. (2021) 33, 18, 7337. https://doi.org/10.1021/acs.chemmater.1c01755

[2] C. Alter et al., 'Synthesis and characterization of a novel highly phosphonated water-insoluble polymer', J. Appl. Polym. Sci. (2020), 137, 48235. https://doi.org/10.1002/app.48235

[3] M. Kroll, 'Reconstruction-Simulation Approach Verifies Impedance-Derived Ion Transport Tortuosity of a Graphite Battery Electrode', J. Electrochem. Soc. (2018), 165, 13, A3156.

https://doi.org/10.1149/2.0711813jes

[3] L. Negre et al. , 'lonogel-based solid-state supercapacitor operating over a wide range of temperatures', Electrochimica Acta (2016) 206, 490. https://doi.org/10.1016/j.electacta.2016.02.013



rhd III instruments www.rhd-instruments.de flexible cell solutions