

0 R

> rocell HC setu equipped with TSC 1600

A versatile measuring setup for the electrochemical characterization of materials developed for energy storage devices

Benedikt Huber, Marcel Drüschler, Bernhard Roling

Philipps-University of Marburg, rhd instruments, Fachbereich Chemie, Hans-Meerwein-Straße, 35032 Marburg

• Fast and comfortable assembly

available [2].

A measuring setup offering unique features - the Microcell HC

The Microcell HC setup is suitable for the electrochemical characterization of liquids, gels, and polymers with a low to high viscosity [1].

Depending on the measuring cell, the measurements can be performed in both a two- and three-electrode setup, during which the temperature of the sample can be controlled quickly and precisely

Only a small sample volume (milligram range) is required, which allows for electrochemical analyses of substances that are only available in small amounts and/or extremely expensive.

A special connecting system ensures a fast exchange of sample cells between measurements. This guarantees a high sample throughput and allows for measuring different components of energy storage devices in a short time.

Easy-to-change electrode system (gold, platinum, glassy carbon).

Quick exchange of special micro-reference electrode; pseudo-

reference electrodes as well as electrodes of the second kind

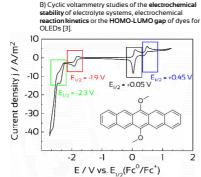
Turn key system for fully-automated measurements under

Easy-to-use, time efficient and flexible software for impedance

data analysis available (RelaxIS - Impedance Spectrum Analysis).

interfaces [4].

temperature control in combination with METROHM devices.


Measurements possible outside or inside a glove box.

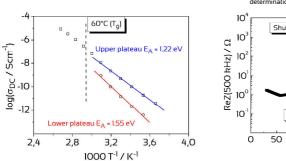
Essential features

- Large temperature range between -40 °C and +100 °C; possible limitations to the range depend on the measuring cell used and measuring conditions.
- Ouick temperature control with maximum temperature ramping rate up to 60 °C/min depending on the measuring cell used.
- Precise temperature control with a tolerance of ±0.1°C
- Measurement of volatile samples when using a sealed measuring cell.
- Small sample volume, varying with the design of the measuring cell, ranging from 70 µl to 1.6 ml.

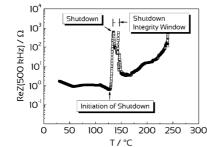
Electrochemical characterisation of liquid samples

A) Impedance spectroscopy to study the sample's temperature dependent dc ion-conductivity

.



4.0


A) Impedance spectroscopy to study the sample's temperature dependent **dc ion-conductivity**.

1000 T⁻¹ / K⁻¹

3.5

B) Hot electrical resistance studies of separator materials soaked with battery electrolyte [5], determination of MacMullin numbers.

log(σ_{DC}/(Scm⁻¹))

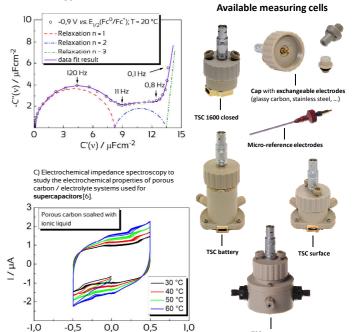
-2

-3

1

2.5

LP30 measu Merck data s


[Py14]FAP me

3,0

KCI m

- Development of further applications for established measuring cells, e.g. coupling with gas analytics [7] allowing for detecting decomposition products during cycling.
- Enhancement of the automation degree by embedding the Microcell HC in standardised liquid handling and sample preparation systems.
- Design of novel measuring cells compatible with the Microcell HC setup for special applications, e.g. the investigation of active materials for solid oxide fuel cells at high temperatures.

- [1] B. Huber, M. Drüschler, B. Roling, Nachrichten aus der Chemie 60 (2012) 1213-1214.
 [2] B. Huber, B. Roling, *Electrochim. Acta* 56 (2011) 6569-6572.
 [3] J. Schwaben, N. Münster, T. Breuer, M. Klues, K. Harms, G. Witte, U. Koert, *Eur. J. Org. Chem.* 2013 (2013) 1639-1643.
 [4] M. Drüschler, N. Borisenko, J. Wallauer, C. Winter, B. Huber, F. Endres and B. Roling, *Phys. Chem. Chem. Phys.* 14. (2012) 5090-5099

C) Electrochemical impedance spectroscopy to study

the differential capacitance of electrode / electrolyte

Aim: One measuring setup (Microcell HC) offering compatibility with a large variety of measuring cells for almost all electrochemical issues.

E/V

TSC spectro

Development of standard measuring routines for scrutinizing material properties like dc ionconductivity or electrochemical stability

[5] E. P. Roth, D. H. Doughty, D. L. Pile, J. Power Sources 174 (2007) 579-583.
[6] Data provided with courtesy by Dipl. Chem. Thomas Jänsch (Working group of Prof. Dr. B. Roling, Philipps-university of Marburg)
[7] Z. Peng, S. A. Freudenberger, Y. Chen, P. G. Bruce, Science 337 (2012) 563-566. [8] www.rhd-instruments.de